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We have studied the energetics, relaxation, and interactions of steps on the Au�332� vicinal surface using a
combination of grazing incidence x-ray diffraction, anisotropic linear elasticity theory, and ab initio density-
functional theory. We find that the initial force distribution on a bulk-truncated surface, as well as the resulting
pattern of atomic relaxations, can be reproduced excellently by a buried dipole elastic model. The close
agreement obtained between experimental and calculated x-ray diffraction profiles allows us to precisely
determine the value of the elastic dipole density at the steps. We also use these results to obtain an experimental
estimate of the surface stress on an unreconstructed Au�111� facet, �Au�111�=2.3�0.4 Nm−1, and the value of
the step-step elastic interaction energy A=950�150 meV Å.

DOI: 10.1103/PhysRevB.81.075415 PACS number�s�: 68.35.B�, 68.35.Md

I. INTRODUCTION

Vicinal surfaces are obtained by cutting a crystal close to
a dense plane. They are characterized by terraces of the
dense plane orientation separated by steps. The presence of
these steps can be exploited for possible technological appli-
cations, e.g., the steps can serve as nucleation centers for the
growth of metallic nanowires.1,2 In such cases, the regularity
of the wire organization obtained is determined by the regu-
larity of the array of steps of the bare surface. At finite tem-
perature, steps fluctuate due to thermal motion.3 The step
fluctuations are governed by both the step-step interactions
and the kink creation energy. While the kink creation energy
is a very local energetic parameter, step interactions have a
long-range component.

Different contributions to the step interactions can be dis-
tinguished. Steps entropically repel one another through the
condition that two steps cannot cross each other; when the
steps are close together, the number of allowed configura-
tions is reduced and this reduction of entropy is equivalent to
an interstep repulsion.4 Steps also interact electronically
through the modification of the density of states,5,6 electro-
statically due to the presence of electrostatic dipoles at the
steps,7,8 and thermally through the modification of their vi-
brational free energy.9 They also interact elastically through
the long-range displacement fields generated by atomic re-
laxations at the steps.10 It is generally assumed that the most
important contribution, at least for large terraces, is the elas-
tic contribution.

Over the years, several authors have come up with elastic
models to describe step-step interactions.10–14 In general,
these works assume a model for the force distribution that
arises at step edges when a crystal is cleaved to create a
vicinal surface; the resulting pattern of displacements and the
corresponding elastic energy �and, thus, the elastic step in-

teraction energy� are then obtained using continuum elastic-
ity theory. In recent years, it has become possible to test the
validity of these models in two ways: �i� experimentally, by
comparison to the results obtained from grazing incidence
x-ray diffraction �GIXD�, and �ii� computationally, by com-
parison to the results obtained from ab initio density-
functional theory �DFT� calculations.

GIXD experiments have been recently performed on vici-
nal surfaces of transition metals.15,16 The model of a buried
elastic dipole has been shown to well reproduce the experi-
ments and linear elasticity has been used for measuring the
elastic interactions between steps on Pt�779� and Cu�223�
vicinal surfaces. For both cases, elastic interactions were
found to be much higher than electrostatic interactions
known from the literature. However, the values found also
differed from the values of the step interaction derived from
scanning tunneling microscopy �STM� measurements. For
Cu�223�, the elastic interaction obtained by GIXD was 1
order of magnitude higher than the interaction derived from
STM measurements.17 For Pt�997�, it was smaller.3,18

There have also been earlier calculations of step energet-
ics using ab initio DFT.19–22 In these calculations, the focus
was primarily on obtaining the difference between the for-
mation energies of terraces with the two kinds of close-
packed steps possible on a face-centered-cubic �fcc� �111� or
hexagonally close-packed �0001� surface. These papers
showed that a precise computation of this very small
��10–100 meV /Å� energy difference required extremely
precise Brillouin-zone sampling and large unit cells and was
therefore computationally demanding. For these reasons, it is
very difficult to quantitatively derive the step interaction en-
ergy from the angular dependence of the surface energy and
only a few ab initio results have been obtained concerning
the step interaction energy.23,24

In this paper, we use both of these approaches for the
particular case of the Au�332� surface and show that the re-
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sults thus obtained correlate well with the buried dipole
model introduced by Prévot and Croset.13,14 In Sec. II, the
experimental measurements and theoretical methods are de-
scribed. The experimental and theoretical results are pre-
sented in Sec. III. Section IV is devoted to a precise analysis
of the results in the frame of the buried dipole model. We
show that a quantitative value of the step interaction energy
can be derived from the measurements or from the calcula-
tion of the atomic displacements. The conclusions are given
in Sec. V.

II. MEASUREMENTS AND CALCULATIONS

A. Sample

The sample was a single crystal consisting of a 4 mm
diameter disk, polished to a mirrorlike surface and cut nor-
mal to the �332� direction. The fcc �332� surface obtained
consists of �111� terraces that are six atomic rows wide, sepa-

rated by �111̄�-faceted steps; a schematic atomistic model is
shown in Fig. 1�a�. The sample surface is cleaned in ultra-
high vacuum �UHV� by standard Ar ion sputtering at 600 eV
for 15 min, followed by annealing at 800 K for 10 min. After
ten of these cycles, the crystalline quality of the surface was
found to be very good, as checked by the low-energy
electron-diffraction �LEED� pattern and STM images over
the whole sample. Figure 1�b� shows a typical STM image
recorded slightly above room temperature, showing the regu-
lar array of step edges and thermal kinks.

B. GIXD

GIXD experiments were performed on the DW12 beam-
line at LURE-DCI storage ring. The sample was introduced
in UHV chambers and the data were collected by means of a
z-axis diffractometer. The base pressure in the chambers was
10−10 Torr. The sample could be transferred from the analy-
sis chamber to a preparation chamber equipped with a four
grid LEED and a cylindrical mirror analyzer Auger spec-
trometer. The x-ray data collection was performed using 15
keV photons with an incidence angle kept fixed at 0.3°,
which corresponds to the angle of total external reflection. To
define the basis, we have used the orthogonal vectors

a� = �− 1

− 1

3
�, b� =

1

2� 1

− 1

0
�, and c� = �3

3

2
�

Therefore, a� is normal to the steps, corresponding to the
distance between two consecutive step edges, which is
13.5 Å, b� is parallel to the steps, corresponding to the sys-
tem zone axis �its modulus being the interatomic distance of
pure gold, i.e., 2.88 Å�, and c� is normal to the surface plane.
In the following, all the data are presented relative to this
basis.

The corresponding h, k, and l indices are used for index-
ing a reflection in reciprocal space. The reciprocal-space
transformation from the surface coordinate �hkl� to the stan-
dard fcc coordinates �HKL� is given by
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We have performed standard rocking scans along various
crystal truncation rods �CTRs� for determining the structure
factors in different regions of the reciprocal space. The inte-
grated intensities were corrected using the procedure re-
ported in Ref. 25.

C. Ab initio calculations

The ab initio DFT calculations were performed using the
PWSCF code, which forms a part of the QUANTUM-ESPRESSO

distribution.26 The interaction between ions and valence elec-
trons was described using an ultrasoft pseudopotential and
exchange-correlation effects were described using the local-
density approximation, as parametrized by Perdew and
Zunger.27 A plane-wave basis set was used, with an energy
cutoff of 40 Ry for wave functions and 320 Ry for charge
densities. We verified that force distributions, atomic dis-
placements, surface energy, and step energy are well-
converged with this choice of basis set. However, for com-
putational reasons, it was found that to obtain a well-
converged value of the surface stress, it was needed to go to
much higher cutoffs of 70 and 560 Ry for wave functions
and charge densities, respectively. Brillouin-zone sampling
was performed using Monkhorst-Pack meshes, together with
the Methfessel-Paxton smearing scheme28 with a smearing
width of 0.05 Ry.

For bulk Au in the fcc structure, we have obtained the
lattice parameter as 4.05 Å, which agrees well with the ex-
perimental value of 4.08 Å. We have also computed the
elastic constants of Au: since one of our aims is to analyze
our ab initio results within the framework of linear elasticity
theory, it is important to correctly reproduce the elastic prop-
erties of Au by ab initio calculations. For a cubic crystal,
there are three independent elastic constants C11, C12, and
C44. They were obtained in a standard way:29 by subjecting a
bulk Au fcc crystal to a homogeneous strain, an orthorhom-
bic strain, and a monoclinic strain and then relating the
change in total energy to the strain applied.
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FIG. 1. �Color online� �a� Schematic diagram of the atomic ar-
rangement on the Au�332� surface, including the unit cell �a� ,b� ,c��
for GIXD measurements and �b� 40 nm STM image of the Au�332�
surface.
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From this procedure, we have obtained C11=209.6 GPa,
C12=182.0 GPa, and C44=36.5 GPa. The corresponding ex-
perimental values are 192.4, 163.0, and 42.0 GPa
respectively;30 the agreement between calculated and experi-
mental values is thus found to be reasonable.

We have also tested our ab initio calculations on a flat and
unreconstructed Au�111� surface. We obtain a surface energy
of 0.071 eV /Å2=1.13 Nm−1 and a surface stress of
0.191 eV /Å2=3.06 Nm−1; these numbers are in reasonably
good agreement with previous calculations.31 We obtain a
pattern of near-surface relaxations where the first interlayer
distance d12 is expanded by 0.78% and the second interlayer
spacing d23 is contracted by −0.43%, with respect to the bulk
interlayer spacing. It is somewhat surprising that d12 is ex-
panded since the general expectation is that metal surfaces
should relax inward. However, a number of calculations, us-
ing both all-electron and pseudopotential methods, have re-
ported an outward expansion of the surface layer on unre-
constructed Au�111�.31,32 We note that it is not possible to
compare this finding directly to experimental results since
the Au�111� surface is actually reconstructed and it is ex-
pected that this reconstruction will affect interlayer spacings
near the surface.

The calculations on the Au�332� surface were performed
using a 17-layer vicinal slab, where the middle layer was
kept fixed and the outer layers on both sides were allowed to
relax. The force convergence threshold was fixed at
10−3 Ry /bohr=0.041 nN. Periodic images were separated
by a vacuum of �14 Å along the z �surface-normal� direc-
tion; this corresponds to about six interlayer spacings. The k
points used were obtained using a �3�12�1� Monkhorst-
Pack mesh. It was verified that the displacements away from
bulk-truncated positions did not change noticeably on in-
creasing the number of layers in the slab, the vacuum spac-
ing, or number of k points.

Forces were calculated using the Hellmann-Feynman
theorem.33,34 Moreover, we have computed the step forma-
tion energy from an appropriate combination of the com-
puted total energies for four different systems: �1� a slab with
�332� surfaces on both sides and containing N1 atoms, �2� a
slab with �111� surfaces on both sides and containing N2
atoms, �3� a single-atom bulk unit cell with k-point sampling
commensurate to that used in �1�, and �4� a single-unit bulk
unit cell with k-point sampling commensurate to that used in
�2�. The corresponding total energies are denoted as E1, E2,
E3, and E4, respectively. The step formation energy � is then
given by

� =
1

2
�E1 − N1E3� − 
16

3
�
1

2
��E2 − N2E4� . �2�

Here, the factors of 1
2 appear because the slabs have two

surfaces and the factor of 16
3 is related to the exposed surface

area on a vicinal surface that consists of six-row terraces
separated by �111-faceted steps. The reason for the two dif-
ferent values used for bulk energies �E2 and E4� is that one
hopes, in this way, to obtain a cancellation in the errors due
to finite Brillouin-zone sampling. In our case, N1=45 and
N2=9.

III. RESULTS

A. Experimental GIXD results

Along each CTR, the diffracted amplitude is of course
maximum at the Bragg position, i.e., at l= lBragg. However,
when going away from the Bragg peak, the amplitude does
not decrease smoothly: at particular values of l, sharp varia-
tions of the amplitude occur. In Fig. 2, all data points are

presented as a function of the momentum transfer l̃ along l
with respect to the value corresponding to the nearest Bragg

spot: l̃= l− lBragg. As can be seen, the positions where the
sharp variations occur are often the same for all rods and

thus depend mainly on l̃. For example, sharp variations of the

amplitude are always present near l̃= �8. As has been
pointed out previously,36 these sharp variations are related to
elastic displacements penetrating deeply into the bulk; they
will be discussed in detail in Sec. IV.

B. Ab initio results

As expected, a bulk-truncated Au�332� surface, where all
atoms are fixed at the positions they would have in an infinite
bulk crystal, is not at equilibrium. The forces on such a bulk-
truncated Au�332� slab are presented in Fig. 3�a�. Significant
forces are experienced primarily by the two atoms at the top

0.1

1

10

-10 -5 0 5 10

(-11 0 l)
(-10 0 l)
(-9 0 l)
(-5 0 l)
(-4 0 l)

(11 0 l)
(12 0 l)

St
ru
ct
ur
e
Fa
ct
or
(a
rb
.u
ni
ts)

l
~

FIG. 2. �Color online� Experimental structure factors of crystal

truncation rods on Au�332� as a function of l̃= l− lBragg.

a b

1 nN

FIG. 3. Results, obtained from ab initio density-functional
theory calculations, for �a� the force distribution on a bulk-truncated
slab with �332� faces and �b� the atomic relaxations, i.e., the dis-
placements away from bulk-truncated positions. For clarity, the re-
laxations have been amplified by a factor of 50.
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and the bottom of a step edge; the forces on all other atoms
are considerably smaller. Moreover, the forces on these
two atoms are approximately equal in magnitude
��1.1 nN /atom� and opposite in direction, with the forces
acting in such a way as to favor a rounding of the sharp step
edge. Thus, if we were to consider the forces exerted on all
the top and bottom corner atoms at a step edge, these are
roughly equivalent to a line of force dipoles, with a torque
component density of pT=0.80 nN and a stretch component
density pS=0.41 nN. Such an arrangement of dipoles, ob-
tained by considering only the forces on the atoms directly at
the step edge, is depicted in Fig. 4�a�. Upon extending this
further by taking into account the forces on the seven atoms
nearest to the step edge, we obtain pT=0.90 nN and pS

=0.05 nN. The large change of pS when extending the cal-
culation to all the atoms is due to the presence of a stretch
dipole surface density below the terraces, as can be seen in
Fig. 3�a�.

In response to this force distribution, atomic positions re-
lax away from their bulk-truncated positions. The resulting
pattern of displacements is shown in Fig. 3�b�. Not surpris-
ingly, the largest displacements occur for the atoms directly
at the top and bottom of the step edge, which move in
roughly opposite directions, by about 0.3 Å, resulting in a
blunting of the sharp step edge. However, there are appre-
ciable displacements of several other atoms in the vicinity of
the step edge; the vectorial pattern of these displacements
resembles a vortex. The mean relaxation of the terrace, i.e.,
the relaxation dz1� of the six terrace atoms in the �111� direc-
tion, is dz1�=0.041 Å and for the next six atoms, i.e., for the
atoms just below the surface, dz2�=−0.002 Å. The interlayer
distance z1�−z2� between the terrace plane and the �111� plane
below is thus expanded by 2.0% with respect to its bulk
value. This relaxation is in the same direction as �but 2.6
times higher than� the relaxation of the first interplanar dis-
tance on an unreconstructed Au�111� surface �see Sec. II C�.

C. Comparison between experimental and theoretical
structure factors

We have used the atomic positions calculated ab initio for
computing theoretical structure factors. For this purpose,
only half of the slab is of course used �from the surface to the
middle of the slab used in the simulations�. The result of the
comparison is drawn in Fig. 5. For this comparison, only two
adjustable parameters are introduced: a scale factor and a
roughness factor. Vicinal surfaces often exhibit nonnegligible
roughness due to the fluctuation of the interstep distance. In
GIXD measurements, this causes a broadening of the CTRs
when going away from Bragg spots, leading to a loss of
intensity when integrating the rocking-scan profiles for ob-
taining the structure factors. We account for the roughness by
making use of the model suggested by Robinson.35 In this
model, the diffracted intensity is corrected by a factor
Frough= �1−��2

�1+�2−2� cos�2��l−l0�/�l� , where l0 is the position of a
Bragg spot along the rod and �l is the distance between two
consecutive Bragg spots along a rod. In our case, �l=44. In
the model of Robinson, the roughness exponent, �, is related
to the fractional occupancy of the planes above the reference
surface. More precisely, �n is the probability of finding an
atom in the nth plane above the surface. �=0 for an ideal
surface and �=1 for a surface above the roughening transi-
tion. In our case, the planes that have to be considered are the
�332� planes. Thus, for vicinal surfaces, small variations of
the terrace width lead to a strong increase in the value of �.

Frough varies slowly with l. Without taking roughness into
account, the theoretical structure factors measured far from
the Bragg spots are on average always higher than the ex-
perimental ones. The variations of the amplitude of the dif-
fracted wave are qualitatively well reproduced by the theory
with a roughness exponent �=0.38. Note that in our case, the
maximum value of �l− l0� /�l is 0.27, giving rise to a maxi-
mum attenuation of the diffracted intensity by a factor
Frough=0.31.

As can be seen in Fig. 5, the positions of the minima of
amplitude along the rods are well reproduced by the simula-
tion. However, considering the logarithmic scale in the inten-
sity, some rods are not perfectly fitted and require a more
refined analysis. This is the case, for example, for the �100l�
and �110l� rods. This indicates that the ab initio results, al-
though rather close to the experiments, are not perfectly in
agreement with them.

Note that modifying the theoretical values of displace-
ment by introducing a simple scale factor does not lead to a
significant improvement in the quality of the fit. Determining
the individual atomic displacements independently is also
not practicable because of the very large number of variables
involved. We have to find another approach toward fitting the
experimental results. Moreover, it is still desirable to under-
stand the underlying physics that governs the pattern of re-
laxations and to estimate the importance of the different fac-
tors governing the step interactions. With such a goal in
mind, in the following, we perform an analysis of the data-
base on linear elasticity theory, with adjustable parameters
for the dipole of forces at the step edge, in order to obtain a
precise value of the step-step interaction. Indeed, we will
show by comparison to the ab initio results that the buried
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FIG. 4. Schematic diagrams showing the dipolar distributions
given in Table I. �a� Point dipole equivalent to the initial force
distribution on the step edge �s� and corner �c� atoms computed by
DFT for a bulk-truncated slab. �b� Elastic point dipole giving the
same displacements as the atomic relaxations computed by DFT. �c�
Elastic point dipole that gives the best fit to the GIXD results. 	 is
the orientation of the lever arm of the dipole with respect to the
surface and x0 and z0 are the positions of the dipole with respect to
the step edge. The dipole is the sum of a torque component p�T and
a stretch component p�S. Note that the �b� and �c� distributions are
very similar.
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dipole model gives, with a very high accuracy, the atomic
displacements, even for atoms very close to the step edge.

IV. RESULT ANALYSIS

A. Origin of the modulation of the amplitude along the rods

For a vicinal surface, the variations of the diffracted am-
plitude have been ascribed to the elastic relaxation modes
near the surface of the crystal.36 Atomic relaxations for at-
oms near the step occur due to the change in the number and
symmetry of neighboring atoms and the modification of the
local electronic density of states near the steps. These relax-
ations propagate elastically into the bulk. Since the steps
form a periodic array of straight lines at the surface of the
crystal, the elastic displacements are expressed naturally as a
Fourier series where each mode takes the form

u� = �
qz

u�0�qz�exp�iqzz�exp�iqxx� , �3�

where u� is the elastic displacement, qx is the wave vector in
the direction parallel to the surface and perpendicular to the

step, and qz is a complex number. Since the steps are peri-
odically spaced, with an interstep distance d, we have qx
=2�p /d, where p is an integer. These elastic modes have
been studied by Croset and Prévot,13,14 who showed that for
each value of qx, there exist only three possible elastic modes
with qz=kqx; here, k is a complex number with negative
imaginary part, resulting from the resolution of a sixth-order
secular equation. k depends only on the elastic constants of
the crystal and on the direction of qx.

13 Moreover, in the case
where �x0z� is a plane of symmetry, the secular equation
reduces to a fourth-order equation and only two modes have
to be considered. This is still the case for the �11̄0� steps
running on the �332� surface of a cubic crystal. For Au�332�,
the resolution of the fourth-order equation for qx
0 gives
the following values for k: k1=−0.88−1.47i and k2=+0.26
−0.49i.13 The real part of k gives the propagation direction
for the elastic modes, whereas the imaginary part gives the
attenuation in depth of the displacements and is thus negative
since z�0 in the bulk. Note that in the case of an isotropic
crystal, one always obtains Im�k�=−1. For Au�332�, the first
mode is thus more rapidly attenuated, whereas the second
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FIG. 5. Comparison between experimental and theoretical structure factors for Au�332�. Dots are the experimental data, while lines are
the values calculated making use of the ab initio DFT results for atomic relaxations.
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mode penetrates deeper into the bulk. For Au�332�, the inter-
step distance is d=13.5 Å. The attenuation length of the
second mode is thus −d /2� Im�k2�=4.4 Å.

A first-order expansion of the expression for the diffracted
amplitude allows us to easily interpret the GIXD results.36 To
each elastic displacement mode correspond new diffraction
satellites, apart from the Bragg spot. The position of the sat-
ellites with respect to the Bragg spots is given by Re�q��.
Moreover, due to the fact that the spacing between the rods is
given by 2� /d, the diffraction satellites are located on crys-
tal truncation rods. The position of these satellites on a rod is
given by36

l̃ = l − lBragg = qx cotan � − Re�qz� , �4�

where � is the miscut angle of the vicinal surface. The inter-
ference between the amplitudes associated with the diffrac-
tion satellites and the fundamental of the rod determines the
shape of the sharp variations that are observed on the rods.
Note also that the full width at half maximum of the diffrac-
tion satellites along l is −�3 Im�qz�.

Let us consider the first positive harmonic of the elastic
displacements, qx=2� /d. For Au�332�, using our system of
reduced units, qx cotan �=8. The satellite associated with the
first elastic mode, for which Re�qz�=qx Re�k1�=−1.2, ap-

pears thus at l̃1=9.2 with a width w1=3.6 whereas the satel-
lite associated with the second elastic mode for which

Re�qz�=0.4 appears at l̃2=7.6 with a narrower width w2
=1.2. The relative intensity of the satellite depends mainly
on the product Q� u�0, where Q� is the scattering vector and u�0
is defined in Eq. �3�. As a result, since Qx varies from one
rod to another, the different rods do not exhibit the same
shape. The measurement of two rods at different positions of
the reciprocal space should allow one to separate out the
contribution of the two modes for each value of qx.

B. Elastic relaxations

It should be possible to directly access the elastic relax-
ation modes by measuring the diffracted amplitude along
crystal truncation rods. In the case of elastic displacements
due to steps on a vicinal surface, the different elastic modes
can also be derived from the distribution of elastic forces
equivalent to a step. As already mentioned, steps on vicinal
surfaces are equivalent to lines of force dipoles.10,13 Using
Hooke’s law and mechanical equilibrium at the surface and
in the bulk, it is possible to derive the elastic displacements
due to the dipoles. The different harmonics of the force dis-
tribution are obtained by a Fourier transform of the force
density distribution near the step. While ab initio calcula-
tions �such as the ones presented in this paper� now enable us
to obtain the atomistic force distribution, in order to go over
to a continuum description that is free of singularities, one
has to use some smoothened form to describe the variation in
the forces along x. Generally, a combination of Lorentzian
profiles along the x direction is assumed.13,14 Steps are thus
described by opposite lines of forces forming lines of elastic
dipoles. When such an approximation is made, analytical for-
mulas can easily be obtained.13,14

For a given vicinal surface, the dipole orientation, the
position with respect to the step edge, and the lever arm
orientation of the dipoles are a priori unknown. However,
these parameters can be derived from numerical simulations
using either ab initio calculations or some parametrized
model for interatomic interactions. Such a procedure has pre-
viously been carried out for vicinal surfaces of transition
metals using semi-empirical potentials derived from tight-
binding considerations.37 However, the comparison to ex-
perimental results obtained for Pt and Cu vicinals15,16

showed that the predicted displacements were roughly 2
times lower than the experimental ones.

We have mentioned in Sec. III B above that the force
distribution computed by ab initio DFT calculations on an
unrelaxed bulk-truncated slab is equivalent to a dipolar dis-
tribution. We have also checked that the calculated atomic
displacements are in good agreement with the response to an
elastic dipole. For this purpose, we have compared the
atomic relaxations presented in Fig. 3�a� to the result of an
elastic calculation with lines of point dipoles at the steps.
Five free parameters, namely, the amplitude, orientation, po-
sitions with respect to the step edge along x and z, and the
lever arm orientation of the dipoles are adjusted in order to
obtain the best agreement with the ab initio results for relax-
ation. We find that the calculated relaxations are equivalent
to the elastic response of an elastic dipole density having a
torque component pT=0.61�0.04 nN and a stretch compo-
nent pS=1.8�0.3 nN. The dipole orientation is presented in
Fig. 4�b�. The value of pT is close to the value derived from
the initial force distribution, whereas the value of pS is very
different. The difference between the value of pT determined
from the initial force distribution and the value of pT deter-
mined from the comparison to linear elasticity could be due
to a modification of the elastic constants at the surface and
especially near the step edge. A stiffening of some elastic
constants has been found near the steps of vicinal surfaces of
transition metals.38 Such effects are not taken into account in
our linear elasticity calculations. A stiffening of the elastic
constants at the step edge could thus explain the higher value
obtained for the dipole directly calculated from the initial
force distribution.

However, such effects cannot explain the differences ob-
served for the value of pS. The high value of pS determined
by linear elasticity calculations could be due to the fact that
these calculations also fit the stretch dipoles that are present
below the terraces. Moreover, the contribution of stretch di-
poles to the atomic displacements is much smaller than
torque dipoles13,37 and a high value of pS can be compen-
sated by a small reduction of pT. Thus, pS is not a very
relevant parameter for describing the atomic relaxations. The
dipole that gives the best fit to the computed relaxations is
located 0.97 Å below the step edge, with a shift of −1.07 Å
along the x direction. In Fig. 6, we compare the relaxations
calculated analytically using linear elasticity theory �dotted
lines� to those obtained by numerical simulation using DFT
�filled circles�. The close agreement between these two sets
of data shows that, at least for Au�332�, approximating steps
by buried point dipoles works remarkably well. Excepting
the relaxations along x of the atoms just below the terrace
plane, all relaxations are very well reproduced. This justifies
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the following choice for analyzing our GIXD data: we have
fitted the diffracted amplitude with the elastic displacements
calculated analytically using the model of lines of buried
dipoles. We have used nine free parameters: the positions x0
and z0 of the lines of dipoles with respect to the step edge,
the width ac of the Lorentzian shape, the lever arm orienta-
tion of the dipoles 	, the two components of the dipole: the
stretch component pS and the torque component pT, a rough-
ness factor �, and the mean relaxations, dz1� and dz2�, of the
two first terrace planes in the �111� direction.

Using the values indicated in the last column of Table I
for these parameters, a perfect fit of the experimental data is
obtained. The comparison between measured and simulated
amplitudes using an adjustable dipole is shown in Fig. 7. All
rods are well reproduced. The values found for dz1� and dz2�
are small, in accordance with the theoretical predictions. In
fact, the quality of the fit depends mainly on the values of
two parameters: � and pT. As already mentioned, � is given
by the surface roughness and determines the overall attenu-
ation of the intensity far from the Bragg spots while pT de-
termines mainly the amplitude of the sharp variations in dif-
fracted intensity. We thus obtain the same value of � as in
Sec. III C, namely, �=0.38. For pT, we obtain a slightly
lower value than the theoretical one pT=0.5 nN instead of
0.61 nN.

In Table I, we have also given the corresponding param-
eters for the elastic dipole equivalent to a step in order to
obtain the ab initio results for atomic relaxations. The values
found for the two sets of parameters �second and third col-
umns in Table I� are very close, which explains why the fit
was already good when using directly the values computed
by ab initio DFT. From the comparison to experiments, it
appears however that the theoretical value of pT is slightly
higher than the experimental value. It is possible that the
value of pT experimentally measured is slightly underesti-
mated due to step disorder. As has been pointed out,36 step
disorder reduces the contribution of integer-order harmonics
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FIG. 6. Atomic relaxations along x and z on Au�332�. The atoms are numbered according to their position along a �1̄1̄2� axis, shown in
the upper schematic. Filled circles depict relaxations calculated using ab initio DFT; dotted lines indicate the elastic response to a point
dipole fitted to the ab initio relaxations, drawn in Fig. 4�b� and corresponding to the second column of Table I; continuous line shows elastic
response to a point dipole fitted to the GIXD results, drawn in Fig. 4�c� and corresponding to the third column of Table I.

TABLE I. Parameters describing the elastic dipoles used for
fitting the ab initio and GIXD results. �x0 ,z0� is the position of the
lines of dipoles with respect to the step edge, ac is the width of the
Lorentzian shape, 	 is the lever arm orientation of the dipoles, pS

and pT are the stretch component and the torque component of the
dipole, and dz1� and dz2� are the mean relaxations of the two first
terrace planes in the �111� direction. For ab initio calculations, two
sets of values are given. In the left column, indicated are the pa-
rameters deduced from the values of the forces exerted on the step
edge and corner atoms on a bulk-truncated slab. In this case, x0 and
z0 are at the midpoints of the step edge and step corner positions
and 	 is given by the step orientation. In the second column, given
are the values obtained from the comparison to linear elasticity
calculations. In the table, also given are the elastic constants used in
the linear elasticity calculations and the value of the dipole interac-
tion energy E2.

Ab initio

GIXDInitial forces Comparison to elasticity

Schematic Figure 4�a� Figure 4�b� Figure 4�c�
x0 �Å� −0.61 −1.07 −1.02

z0 �Å� −1.09 −0.97 −0.94

ln�ac /a0� −3.9 −2.8

	 �degrees� 119 102 93

pS �nN� 0.41 1.8�0.3 1.7�0.5

pT �nN� 0.80 0.61�0.04 0.50�0.08

dz1� �Å� 0.001 0.016

dz2� �Å� 0.001 0.016

C11 �GPa� 209.6 192.44

C12 �GPa� 182.0 162.98

C44 �GPa� 36.5 42.00

a0 �Å� 4.05 4.08

E2 �meV/at� 860�150 720�180
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in the Fourier decomposition of the elastic displacements.
Since only these harmonics contribute to the measured sig-
nal, step disorder leads to a decrease of the value of pT mea-
sured, in comparison to data obtained on a perfect surface.

The elastic displacements corresponding to the best fit of
the GIXD data with an elastic dipole are drawn in Fig. 6. As
already mentioned, these displacements depend mainly on
the value of pT. This is due to the fact that elastic displace-
ments due to pure stretch dipoles are much smaller than dis-
placements due to pure torque dipoles.13,37 Since GIXD is
sensitive to atomic displacements, the uncertainty in the
computed value of pT is thus much smaller than the uncer-
tainty in pS. The comparison to ab initio results shows that
the atomic relaxations measured along x are close to the
relaxations computed ab initio, whereas the atomic relax-
ations along z are approximately one third lower than the
theoretical relaxations.

C. Surface stress

It is very interesting to precisely measure pT since its
value can be directly related to the surface stress of the nomi-
nal surface �Au�111�,

pT = hStep�Au�111�, �5�

where hStep is the step height. This equation, first stated by
Marchenko and Parchin,10 has been shown to be correct for a
lot of vicinal surfaces, in particular for Au�111� vicinals.37

Inverting Eq. �5�, one obtains �Au�111�=2.1 Nm−1. Since
Au�332� vicinals are not reconstructed, we measure here the
surface stress of an unreconstructed Au�111� surface. Such
an experimental determination of the surface stress for
Au�111� has not, to the best of our knowledge, been per-
formed by other techniques. Some measurements of the
mean surface stress �Au of small crystalline particles have
been performed. For example, Solliard and Flueli39 found
�Au=3 Nm−1, but the method used does not allow one to

0.01

0.1

1

0 2 4 6 8 10 12

(9 0 )l

0.1

1

10

0 2 4 6 8 10 12

(11 0 )l

0.1

1

10

0 2 4 6 8 10 12

St
ru
ct
ur
e
fa
ct
or
(a
rb
.u
ni
ts
)

(0 2 )l

0.1

1

10

0 2 4 6 8 10 12

St
ru
ct
ur
e
fa
ct
or
(a
rb
.u
ni
ts
)

(10 0 )l

0.1

1

10

0 2 4 6 8 10 12

(5 0 )l

1

10

0 2 4 6 8 10 12

(12 0 )l

l

0.1

1

10

0 2 4 6 8 10 12

St
ru
ct
ur
e
fa
ct
or
(a
rb
.u
ni
ts
)

(4 0 )l

l

0.1

1

0 2 4 6 8 10 12

(11 0 )l

l

FIG. 7. Comparison between experimental and theoretical structure factors for Au�332�. Dots: experiments; full line: simulation with
elastic displacements due to lines of dipoles. The parameters used for the elastic displacements are given in the third column of Table I.

PRÉVOT et al. PHYSICAL REVIEW B 81, 075415 �2010�

075415-8



separate the contributions of the different facet orientations.
The difference between the surface stress of a reconstructed
and an unreconstructed Au�111� surface have also been mea-
sured, but measurements have been performed in solution40

and the absolute value of the surface stress could not be
determined from the experiments.

However, several previous authors have performed ab ini-
tio DFT calculations where they have computed the surface
stress on Au�111�; they obtained values of �Au�111�
=3.3 Nm−1,41 2.6 Nm−1,42 and 2.8 Nm−1.43 In this study,
we have found a quite similar value, with �Au�111�
=3.06 Nm−1. Using this value and hStep=0.236 nm in Eq.
�5�, we obtain pT=0.72 nN. This value is slightly lower than
the values obtained from our ab initio DFT computation of
forces �0.8–0.9 nN� and slightly higher than the value of the
elastic dipole that fits the ab initio DFT calculations �0.61
nN�. This indicates that, using this method, a quite good
precision on the surface stress value should be obtained.

We point out that the surface stress on an unreconstructed
Au�111� facet is a parameter of considerable interest since it
has been shown to play a key role in the self-organization of
Au�111� vicinal surfaces.44 It is also important to know its
value since it could play a role in the mechanisms leading to
the 22��3 reconstruction of Au�111�.32,43 From the com-
parison between experiments and theory, we can make two
hypotheses for determining the surface stress. In the first
hypothesis, assuming that Eq. �5� is still valid and using the
experimental value pT=0.50 nN, we obtain �Au�111�
=2.1 Nm−1. In the second hypothesis, we notice that the
torque component of the elastic dipole density which fits the
GIXD results is 18% lower than the one that fits the ab initio
results and we assume that the same factor should apply for
the surface stress. In that case, we obtain �Au�111�
=2.5 Nm−1. These two values differ by only 16%. Thus,
from the experimental uncertainty on the value of pT and
from the uncertainty on the derivation of �Au�111� using the
elastic dipole density, we estimate that our GIXD determina-
tion of the surface stress is �Au�111�=2.3�0.4 Nm−1.

D. Elastic interactions

From the experimentally measured value of the elastic
dipoles, the elastic interaction energy between two straight
steps can be obtained. The interaction energy �int between
two steps is, in a first-order approximation, inversely propor-
tional to the square of the interstep distance:10 �int���
=A /d2+O�1 /d3�. For a regular array of steps, this interaction
sums to the step energy �0 of an isolated step so that the step
energy can be written as

� = �0 +
�2

6

A

d2 = �0 +
E2

d2 . �6�

For a regular vicinal surface, A depends only on the value
of the elastic dipoles, on the values of the elastic constants,
and on the surface orientation.14 In particular, A depends
quadratically on pS and pT, with a prefactor depending on the
lever arm orientation. Except for 	 close to 0 or �, i.e.,

when the lever arm of the dipoles is practically parallel to the
surface, the contribution of pS is much smaller than the con-
tribution of pT. This means that except for this particular
lever arm orientation, dipoles that give rise to small elastic
displacements also give rise to small interaction between
steps. This is still the case here since 	�� /2.

Using the values of the elastic dipoles determined by
GIXD and equations given in Ref. 14, we find E2

=720�180 meV /at for d expressed in number of atomic
rows. This corresponds to a value A=950�150 meV Å,
when all distances are expressed in Å. The value of elastic
step interactions on Au�332� is thus much higher than the
value of the elastic step interactions on Cu�223�, for which
an experimental value of E2�50 meV /at has been found,16

but closer to the value found for step interactions on Pt�779�,
for which E2�400 meV /at.11 It is also possible to compute
elastic interactions from ab initio results using the values of
the theoretical elastic dipole that fits the computed atomic
relaxations. In that case, we find E2=860 meV /at. Since the
relaxations calculated ab initio are slightly higher than the
values found by GIXD, the elastic interactions are also found
to be higher.

We can compare the step elastic interaction to the step
formation energy computed using Eq. �2�, which gives �
=248 meV /at. Using E2=860 meV /at and d�5.4 rows, we
find that E2 /d2=29 meV /at and thus �0=219 meV /at. Ex-
perimentally, we are not able to measure this quantity since
we do not know the nonelastic part of the step formation
energy, i.e., the local cost for reducing the number of neigh-
bors for step edge atoms. However, the fact that ab initio
calculations reproduce quite well atomic relaxations could
indicate that the value of �0 computed is quite good.

V. CONCLUSION

We have measured by GIXD the crystal truncation rods of
an Au�332� surface. These data have been analyzed both by a
direct comparison to ab initio calculations and by a model
based on linear elasticity. We have shown that the experi-
mentally obtained diffraction profiles are in good agreement
with the displacements obtained from our ab initio calcula-
tions. Moreover, the calculated atomic displacements can be
well reproduced by a simple elastic model with a buried line
of dipoles. The comparison between the results obtained by
the fit of GIXD experiments and the ab initio simulations
shows that the main parameter, which is the torque dipole
generated by the step edge, is slightly overestimated by ab
initio calculations, in relation with the calculated surface
stress value, for which we are able to obtain the absolute
value. The small differences between experiments and simu-
lations could be due to the experimental roughness along the
step edges which is not taken into account in the analysis or
to fine details of the ab initio calculations, for example, re-
lated to the fact that the computed values of the elastic con-
stants differ from the experimental values. This provides a
good test to check the importance of different terms in the
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calculations of atomic displacements by these methods. Fi-
nally, the value of the step edge torque dipole allows us to
estimate the strength of the step-step interaction on Au�111�
vicinal surfaces, which is found to be high as compared to
other metallic surfaces. This explains the narrow terrace
width distribution observed on these surfaces, which can be a
crucial parameter for the measurements of physical proper-
ties of naturally nanopatterned surfaces.45
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